Scalable and Congestion-aware Routing for Autonomous Mobility-on-Demand via Frank-Wolfe Optimization

Kiril Solovey
Aeronautics & Astronautics, Stanford
kirilsol@stanford.edu / kirilsol.github.io

* Joint work with Mauro Salazar and Marco Pavone
** Appeared in Robotics: Science and Systems 2019
Autonomous Mobility-on-Demand (AMoD)

- Possible benefits:
 - Safe
 - Cheaper / faster (less congestions)
 - Currently: selfish drivers with greedy strategies
 - Environmentally friendly (less pollution, less cars, public space)

* Figure borrowed from Mauro Salazar

Kiril Solovey / kirilsol.github.io

Scalable and Congestion-aware AMoD Routing
Autonomous Mobility-on-Demand (AMoD)

• Routing large-scale AMoD systems:
 1. Assigning routes to passenger-carrying vehicles
 2. Rebalancing empty vehicles
 3. Accounting for congestions effects caused by system
Contribution

• We develop an efficient AMoD routing algorithm achieving system-optimal performance
 • Strong theoretical guarantees
 • Convergence to optimum within mere seconds (for realistic data sets)

• Tested with Manhattan data set
 • Roadmap graph with 5K edges + vertices
 • 155K origin-destination pairs

• At least 10x faster than competitors
 • While modelling congestions more accurately (using exact representation of BPR volume-delay function)
Key idea

- Our main insight is that AMoD routing can be transformed into an equivalent traffic assignment problem (TAP) [1]
 - No rebalancing!

- Graph and OD-pair expansion:
 - Empty rebalancers modeled as passengers having specific origins and destinations

- Resulting TAP is convex!
 - Can be solved efficiently using Frank-Wolfe optimization + modern pathfinding approaches [2]

Kiril Solovey / kirilsol.github.io

Scalable and Congestion-aware AMoD Routing
Outline

1. Related work
2. Preliminaries (ingredients and formal definition of problem)
3. Algorithm: AMoD routing as TAP
 - Theoretical analysis
4. Traffic assignment and Frank-Wolfe algorithm
5. Experimental results (Manhattan, NY)
6. Conclusion and future work
AMoD: related work

- Huge amount of work on Human-Robot interaction in a transportation
 - Sadigh et al., Pavone et al., and many more...
- We are interested in Robot-Robot interaction
 - Operating a centrally controlled fleet of multiple vehicles
- Early work [Pavone et al.; 2007(!)] considered simplified continuous domains
- More recent work considers real roadmap topologies
 - Queuing-theoretic models [Iglesias et al; 2016], [Zhang and Pavone; 2016]
 - Network flow models [Spieser et al; 2014], [Rossi et al; 2018]
 - Receding-horizon implementation [Iglesias et al; 2018], [Tsao et al; 2018]
- Extensions:
 - Interaction with power grid [Rossi et al; 2018]
 - Interaction with public transit [Salazar et al; 2018]
 - Ridesharing [Cap and Alonso-Mora; 2018], [Tsao et al; 2018]
AMoD: related work

• Algorithmic details
 • Typically use mathematical programming (linear / convex)
 • Difficult to parallelize
 • Usually limited to small-scale scenarios

• Congestion awareness
 • Majority of approaches ignore congestion affects
 • Threshold model [Rossi et al; 2018]
 • Linear approximation of volume delay function [Salazar et al; 2018]
AMoD: related work

Our work is inspired by recent progress in traffic assignment:

- Combines classic Frank-Wolfe algorithm and modern pathfinding techniques
- Congestion aware: uses a full representation of the BPR volume-delay function
- Computes traffic flows over full road network (Stuttgart, 2.7mil people), for 2h scenario in mere seconds!

Question: Can we exploit the similarity between TAP and AMoD, and extend those tools to our setting?

Preliminaries: roadmap network

- Road network is modeled by a directed graph \(G = (V, E) \)
- Each edge \((i, j) \in E\) associated with a cost function \(c_{ij} : \mathbb{N}_+ \to \mathbb{N}_+ \)
 - Represents the travel as a function of total flow \(x_{ij} \) over edge
- We use the popular BPR function:
 \[
 c_{ij}(x_{ij}) = BPR(x_{ij}, \kappa_{ij}, \phi_{ij}) := \phi_{ij} \cdot \left(1 + 0.15 \cdot \left(\frac{x_{ij}}{\kappa_{ij}} \right)^4 \right),
 \]
 where \(\kappa_{ij} > 0 \) is capacity (per time unit), and \(\phi_{ij} > 0 \) is free-flow travel time.
Preliminaries: user requests

• Travel demand represented by passenger requests
 \[OD = \{(\lambda_m, o_m, d_m)\}_{m=1}^M \]
 • \(\lambda_m > 0 \) represents customer number for each time step
 • \(o_m, d_m \in V \) are origin and destination
 • \(\lambda_m \) should be interpreted as the average number of customers per time unit
• To summarize, the input consists of \(G \) and \(OD \)
Traffic Assignment Problem (TAP)

• “Assign requests to paths to minimize the total travel time”
• We model this as a mathematical (convex) program
• Let x_{ijm} be the flow of commodity m for edge (i, j)
• Constraints: (1) conservation of flow, (2) nonnegative flow

$$\sum_{j \in V_i^-} x_{ijm} - \sum_{j \in V_i^+} x_{jim} = \lambda_{im}, \quad \forall i \in V, m \in M, \quad (1)$$

where $\lambda_{im} := \begin{cases}
\lambda_m, & \text{if } o_m = i, \\
-\lambda_m, & \text{if } o_m = i, \\
0, & \text{o/w}
\end{cases}$

and V_i^-, V_i^+ denote the heads/tails of edges leaving/entering $i \in V$

$$x_{ijm} \geq 0, \quad \forall (i, j) \in E. \quad (2)$$
Traffic Assignment Problem (TAP)

Definition (TAP): Given G, OD, minimize the expression

$$F_E(x) = \sum_{(i,j) \in E} x_{ij} c_{ij}(x_{ij}),$$

subject to (1),(2), where $x := \{x_{ij} = \sum_{m \in M} x_{ijm} \mid (i,j) \in E\}$.

- Remarks:
 - It corresponds to minimal-cost multi-commodity flow (NP-hard)
 - $F_E(x)$ is convex (and so are the constraints)
 - $F_E(x)$ represents the system optimum, i.e., total travel time
 - If we replace $x_{ij} c_{ij}(x_{ij})$ with $\int_{0}^{x_{ij}} c_{ij}(s) \, ds$, then we’ll get the user equilibrium
Autonomous mobility-on-demand (AMoD)

- Vehicles in AMoD systems perform two types of tasks:
 1. Occupied vehicles drive passengers from o_m to d_m
 2. Empty vehicles need to drive to the next origin node o_m'

- Observations concerning the latter task
 - It is not represented in the TAP formulation
 - **It consists of assignment AND routing**

- Let x_{ijr} be the *rebalancing* flow of empty vehicles for edge (i,j)

- Additional constraints: (3) conservation of rebalancing flow, (4) nonnegative rebalancing flow

\[
\sum_{j \in V_i^+} x_{ijr} - \sum_{j \in V_i} x_{jir} = r_i, \quad \forall i \in V, \quad (3)
\]

for $r_i := \sum_{m \in M} (I \{d_m = i\} - I \{o_m = i\}) \lambda_m$,

\[
x_{ijr} \geq 0, \quad \forall (i,j) \in E. \quad (4)
\]

Kiril Solovey / kirilsol.github.io
Scalable and Congestion-aware AMoD Routing
Autonomous mobility-on-demand (AMoD)

Definition (AMoD): Given G, OD, minimize the expression

$$F_E(\hat{x}) = \sum_{(i,j) \in E} \hat{x}_{ij} c_{ij}(\hat{x}_{ij}),$$

subject to (1),(2),(3),(4) where $\hat{x} := \{\hat{x}_{ij} = x_{ij} + x_{ijr} | (i, j) \in E\}$.

- **Remarks / limitations of model:**
 - We assume that mobility requests do not change with time
 - We model vehicles routes as fractional flows
 - We do not account for microscopic traffic phenomena (e.g., traffic lights, shocks)
 - We constrain the capacity of vehicles to 1

Kiril Solovey / kirilsol.github.io

Scalable and Congestion-aware AMoD Routing
AMoD as TAP: roadmap adjustments

• We transform AMoD into TAP

• Main challenge is that empty rebalancers don’t have predefined destination vertices

• Given G, OD, we generate $G' = (V', E')$, OD' where
 \[V' = V \cup \{n\}, \quad E' = E \cup \{(i, n) | i \in V \text{ and } r_i < 0\} \]

 ($r_i < 0$ indicates that there are fewer request arriving to i than departing)

 \[OD = \{(2,1,2), \quad (1,2,4), \quad (1,3,4), \quad (2,4,1), \quad (2,4,2)\} \]
AMoD as TAP: demand adjustments

• We added a dummy vertex n and dummy edges (i, n)
• To mimic empty rebalancers as user requests we introduce OD'
 • Includes all the requests from OD
 • For every i with $r_i > 0$, add the request (r_i, o_i, n)

\[G = \{1, 2, 3, 4, 5, 6\} \]
\[G' = G \cup \{(3, 2, 6)\} \]

\[OD = \{(2, 1, 2), (1, 2, 4), (1, 3, 4), (2, 4, 1), (2, 4, 2)\} \]
\[OD' = OD \cup \{(3, 2, 6)\} \]
AMoD as TAP: guaranteeing rebalancing

- We ensure rebalancing (i.e., the correct number of empty vehicles will reach proper vertices) by setting proper values of capacity and free flow over the dummy edge.

- For every \((i, n)\), \(c_{in}(x_{in}) = BPR(x_{in}, \kappa_{in}, \phi_{in})\):
 - \(\kappa_{in} = -r_i\) (amount of rebalancing request for \(i\))
 - \(\phi_{in} = L\), where \(L\) is a large constant (identical for all dummy edges)

\[
\begin{align*}
\kappa_{3,6} &= 1 \\
\kappa_{4,6} &= 2 \\
\lambda_{m}, o_{m}, d_{m} \\
OD &= \{(2,1,2), (1,2,4), (1,3,4), (2,4,1), (2,4,2)\} \\
OD' &= OD \cup \{(3,2,6)\}
\end{align*}
\]
AMoD as TAP: overall approach

- Given G, OD, generate G', OD'
- Solve (using FW) the new TAP problem
 - I.e., find x minimizing
 \[
 F_{E'}(x) := F_E(x) + F_{\bar{E}}(x), \quad \text{where } F_{\bar{E}}(x) := \sum_{(i,n) \in \bar{E}} x_{in} c_{in}(x_{in})
 \]
 - AMoD flows are given by x (after discarding flow on dummy edges)
 - Cost of AMoD solution is given by $F_E(x)$

Question: what can we say about the theoretical guarantees of x?
1. What is the fraction of fulfilled rebalancing requests?
2. How far $F_E(x)$ is from the optimal solution to the original AMoD problem?
Theory: rebalancing constraints

First, motivation for setting κ_{in}, ϕ_{in}

- Let R the total number of empty rebalancers.

Lemma (optimal assignment for dummy edges): Let $x^* = \arg\min F_{\bar{E}}(x)$ such that $\sum_{(i,n) \in \bar{E}} x^*_{in} = R$. Then

$$x^*_{\bar{E}} = \kappa,$$

where $\kappa := \{\kappa_{in} | (i,n) \in \bar{E}\}$,

and $x^*_{\bar{E}}$ is the restriction of x^* to \bar{E}.

Proof. Using Lagrange multipliers and relying on the structure of the BPR function.
Theory: rebalancing constraints

For a given solution \(x \), the expression

\[
\frac{\|x_{\bar{E}} - \kappa\|_1}{2R}
\]

represents fraction of unfulfilled requests.

Theorem (bounded fraction of unfulfilled requests):

Let \(x^* = \text{argmin} \ F_{E'}(x) \) subject to constraints (1),(2). Then for every \(\delta \in (0,1] \), there exist \(L_\delta \in (0,\infty) \) such that if \(L > L_\delta \) then

\[
\frac{\|x^*_{\bar{E}} - \kappa\|_1}{2R} \leq \delta.
\]
Theory: rebalancing constraints

Theorem (bounded fraction of unfulfilled requests): Let \(x^* = \arg\min F_{E'}(x) \) subject to constraints (1),(2). Then for every \(\delta \in (0,1] \), there exist \(L_\delta \in (0,\infty) \) such that if \(L > L_\delta \) then \(\frac{\|x_E^* - \kappa\|_1}{2R} \leq \delta \).

Proof.

- Let \(x^0 \) be an assignment (satisfying (1), (2)) such that
 - \(x_E^0 = \kappa \) and \(F_E(x^0) \) is minimized
 - \(x^0 \) corresponds to the optimal solution of the original AMoD problem with full rebalancing

- Fix \(\delta \in (0,1] \) and let \(x^\delta \) be any assignment with \(\|x_E^\delta - \kappa\|_1 / 2R > \delta \)

- We wish to find \(L_\delta \) s.t. for any \(L > L_\delta \) it holds that \(F_{E'}(x^\delta) > F_{E'}(x^0) \)

- This implies that \(x^* = \arg\min F_{E'}(x) \) must satisfy at least \(1 - \delta \) of rebalancing request

\(E \): edges of \(G \)
\(E' \): edges of \(G' \)
\(\bar{E} \): edges of \(G' \setminus G \)
Theory: rebalancing constraints

Proof cont.

• By Lemma,
 \[F_{E'}(\mathbf{x}^\delta) > F_{E'}(\mathbf{x}^0) \Rightarrow F_{\overline{E}}(\mathbf{x}^\delta) - F_{\overline{E}}(\mathbf{x}^0) > F_{E}(\mathbf{x}^0) - F_{E}(\mathbf{x}^\delta) \]

• Bounding the RHS is tricky...

• Instead, we will find \(L \) such that \(F_{\overline{E}}(\mathbf{x}^\delta) - F_{\overline{E}}(\mathbf{x}^0) > F_{E}(\mathbf{x}^0) \)

• We can find (practical) upper bounds for \(F_{E}(\mathbf{x}^0) \)

• Lower-bounding the LHS is simpler since edges of \(\overline{E} \) are not interconnected

• We get \(F_{\overline{E}}(\mathbf{x}^\delta) \geq F_{\overline{E}}(\mathbf{x}^0) + \text{const} \cdot L\delta^2 \)

• Thus, when \(L = F_{E}(\mathbf{x}^0)/\delta^2 \text{const} \) we get the desired result ■
Theory: cost of routing scheme

• What can we say about the cost of the actual routing scheme?
 • I.e., what is the relation between $F_E(x^*)$ and $F_E(x^0)$?

Corollary (bounded cost of routing): Fix $\delta \in (0,1]$ and choose $L > L_\delta$.
Then (i) $\frac{\|x^*_E - \kappa\|_1}{2R} \leq \delta$, and (ii) $F_E(x^*) < F_E(x^0)$, where $x^* = \arg\min F_{E'}(x)$ subject to constraints (1),(2).

Proof.
• By definition of x^*: $F_{E'}(x^*) < F_{E'}(x^0)$
• By Lemma: $F_{\bar{E}}(x^0) < F_{\bar{E}}(x^*)$, thus:

\[
F_{E'}(x^*) = F_E(x^*) + F_{\bar{E}}(x^*) < F_{E'}(x^0) \\
= F_E(x^0) + F_{\bar{E}}(x^0) < F_E(x^0) + F_{\bar{E}}(x^*) \\
\Rightarrow F_E(x^*) < F_E(x^0)
\]
Convex programming for TAP

• Our TAP formulation induces a convex program
 • For every \((i, j)\), the second derivative of \(x_{ij}c_{ij}(x_{ij})\) is strictly increasing
 • \(F_E(x)\) is a sum of convex functions

• We will employ the Frank-Wolfe (FW) [Frank & Wolfe; 1956] for minimizing \(F_E(x)\):
 • Recently has been used extensively in machine learning [Lacoste-Julien & Jaggi; 2015], [Pêna et al.; 2016], *
 • Has been applied to TAP already in 1985

• Important: FW breaks the optimization into a sequence of shortest path queries on a static graph!

FW optimization

In its core, it’s a gradient decent method.

Algorithm 1 FRANKWOLFE \((\tilde{F}_E, G, OD)\)

1: \(x^0 \leftarrow \) feasible solution for TAP; \(k \leftarrow 0\)
2: **while** stopping criterion not reached **do**
3: \(y^k \leftarrow \text{argmin}_y \tilde{F}_E(x^k) + \nabla \tilde{F}_E(x^k)^T(y - x^k)\), s.t. \(y^k\) satisfies (1), (2)
4: \(\alpha_k \leftarrow \text{argmin}_{\alpha \in [0, 1]} \tilde{F}_E(x^k + \alpha(y^k - x^k))\)
5: \(x^{k+1} \leftarrow x^k + \alpha_k(y^k - x^k); k \leftarrow k + 1\)
6: **return** \(x^k\)

* Pseudo-code based on formulation of [Patriksson; 2015]
** Figure by Stephanie Stutz for public domain, labels added by Martin Jaggi, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=35484532

Kiril Solovey / kirilsol.github.io

Scalable and Congestion-aware AMoD Routing
FW, a closer look

Step 3 turns out to be relatively-simple too!

\[F_E(x^k) + \nabla F_E(x^k)^T (y - x^k) \]

- Minimizing this expression ⇔ minimizing \(\nabla F_E(x^k)^T y \)
- Next, note that \(\frac{\partial}{\partial x_{ij}} F_E(x^k) = c_{ij}(x^k_{ij}) \)
 - I.e., the cost of traversing \((i, j)\) for demand \(m\) only depends on \(x_{ijm}\)
- Thus, the optimal \(y\) is simply a set of shortest paths (satisfying (1),(2)) with respect to the graph with (static) edges weights \(c_{ij}(x^k_{ij})\)!
- This step is called all-or-nothing assignment

* Pseudo-code based on formulation of [Patriksson; 2015]
** Figure by Stephanie Stutz for public domain, labels added by Martin Jaggi, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=35484532
Experiments

- We validate experimentally our theoretical results
- Approach yields near-optimal solutions within seconds, where most requests (99%) are fulfilled, for realistic scenarios (e.g., 150K users)
- Our bounds for L are quite conservative and already small values yield desired outcome in practice
- Running times and convergence rates scale linearly with input size
- Our approach is several orders faster than previous work
Implementation details

• Results obtained over commodity laptop
 • 2.80Ghz * 4 core i7-7600U CPU, 16GB RAM
• C++ Frank-Wolfe implementation was adapted (minor changes) from the routing-framework
• Shortest-path queries performed using RoutingKit, and other speedups described in [Buchold et al.; 2018]

github.com/vbuchhold/routing-framework
github.com/RoutingKit/RoutingKit

Kiril Solovey / kirilsol.github.io

Scalable and Congestion-aware AMoD Routing
Data

- Our data is based on [Salazar et al.; 2018]
- Roadmap G is for Manhattan, NY
 - $|V| = 1352$, $|E| = 3338$
 - Extracted from Open Street Map
- OD-pairs inferred from taxi rides (2012)
 - Morning peak hour
 - We scaled the requests by a factor of 6, to simulate all ride-hailing vehicles
 - 6*25,960 requests in total
- To simulate exogenous traffic, we increase the cost from
 $c_{ij}(x_{ij})$ to $c_{ij}(x_{ij} + x_{ij}^e)$
 - We choose a global value γ_{exo} and assign
 $\frac{x_{ij}^e}{\kappa_{ij}} = \gamma_{exo}$
 - Unless stated otherwise $\gamma_{exo} = 0.8$
Validation of theory

- We study how the value of L affects
 - Fraction of unfulfilled requests δ
 - Real cost $C_r := F_E$
 - Dummy cost $C_d := F_{\overline{E}}$
- $L = 3, 6, 12, 24, 48, 96, 192$ minutes
- Plot results for 100 iterations (15sec total)
 - OPT was obtained for $L = 96$ after 10,000 iter.
 - Relative difference for last iteration of OPT was around $2 \cdot 10^{-7}$
- Conclusions:
 - Values plateau within 100 iterations or earlier
 - Relatively small L, e.g., 96, already yields desired results
 - Desired L can be found using binary search
Scalability

• We demonstrate the scalability of approach
 • Fix $L = 96$ minutes
 • Scale the original OD set by 1,2,3,4
 • Adjust γ_{exo} to 0.8,0.6,0.4,0.2
 • 1000 iterations in total

• Values in brackets:
 • δ at 100 iterations
 • C_r at 100 iterations
 • running time at 100 iterations

• Conclusion:
 • Running time and convergence rates scale linearly with input size
 • We mention that real data will behave slightly differently due to larger variance

Scalable and Congestion-aware AMoD Routing
Comparison with previous work

• We compare the cost of the obtained solution of
 • Our approach (full BPR)
 • Piecewise-linear approximation of BPR [Salazar et al.; 2018]
 • Congestion-unaware approach [Pavone et al.; 2011]

• Parameters: \(L = 96, \gamma_{exo} \in [0.0,2.0] \)
Conclusion

• Presented an efficient approach for congestion-aware AMoD routing

• Although full rebalancing is not guaranteed, solution can be easily fixed to provide it

• Real-time implementation:
 • Receding-horizon optimization
 • Recover integer flows via randomized rounding [Rossi, 2018]
 • Microscopic simulations with AMoDeus+MATSim or SimMobility

• More speedup:
 • Use customizable contraction hierarchies
 • Bundle identical OD pairs
 • Multi-core implementation (algorithm is embarrassingly parallel!)
Conclusion

• Theory:
 • Better estimation for L_δ
 • Convergence-rate analysis [Lacoste-Julien and Jaggi, 2015]

• Extensions
 • Incorporate more realistic flow properties
 • Dynamic (time-variant) version
 • Dynamic version of Frank-Wolfe is needed!

Limitations of AMoD

Kiril Solovey / kirilsol.github.io

Scalable and Congestion-aware AMoD Routing
Limitations of AMoD

Do transportation network companies decrease or increase congestion?

Gregory D. Erhardt¹, Sneha Roy¹, Drew Cooper², Bhargava Sana², Mei Chen¹ and Joe Castiglione²

See all authors and affiliations

Science Advances 08 May 2019;
Vol. 5, no. 5, eaau2670
DOI: 10.1126/sciadv.aau2670

Abstract

This research examines whether transportation network companies (TNCs), such as Uber and Lyft, live up to their stated vision of reducing congestion in major cities. Existing research has produced conflicting results and has been hampered by a lack of data. Using data scraped from the application programming interfaces of two TNCs, combined with observed travel time data, we find that contrary to their vision, TNCs are the biggest contributor to growing traffic congestion in San Francisco. Between 2010 and 2016, weekday vehicle hours of delay increased by 62% compared to 22% in a counterfactual 2016 scenario without TNCs. The findings provide insight into expected changes in major cities as TNCs continue to grow, informing decisions about how to integrate TNCs into the existing transportation system.
Future work

• Understanding of user behavior (demand)
 • Elastic demand
 • Pricing and tolling

• Ridesharing (capacity > 1)

• Interaction with private vehicles

• Interaction with public transit

* Figure from Zgraggen et al., 2019

Kiril Solovey / kirilsol.github.io

Scalable and Congestion-aware AMoD Routing
Shortest path queries in transportation networks

- All-or-nothing assignment consists of multiple independent queries
- Standard techniques (Dijkstra, A*, APSP) are too expensive
- Algorithms tailored for transportation networks:
 - Highway hierarchies [Sanders and Schultz; 2005]
 - Contraction hierarchies [Geisberger et al.; 2012]
 - Customizable contraction hierarchies [Dibblet et al.; 2016]

* See also Bast et al., “Route planning in transportation networks”. In Algorithm Engineering: Selected Results and Surveys, 2016.

Kiril Solovey / kirilsol.github.io
Scalable and Congestion-aware AMoD Routing